

STATE TALENT SEARCH EXAMINATION-2019-20, RAJASTHAN SCHOLASTIC APTITUTE TEST (SAT)_PAPER

Unit of force is

1.

	(1) newton	(2)) dyne	
	(3) kilogram-mitre/ second 2	(4)) all of these	
Sol.	(1)			
2.	if work, force and time are rep	resented by	x, y and z respective	ely, then the term $(\frac{x}{vz^2})$ will
	represent			<i>J</i> ~
	(1) displacement	(2)) velocity	
	(3) acceleration	(4)) momentum.	
Sol.	(3). $\frac{x}{yz^2} = \frac{w}{Ft^2} = \frac{s}{t^2}$ acce	eleration		
3.	An objective of mass 100gm	is moving w	ith an acceleration c	f 10 m/s ^{2.}
	force acting on the object will b	be		
	(1) 1000 N	(2)) 100 N	
	(3) 1 N	(4)) 0.1 N	
Sol.	(3) F = ma			
	F = (.1 kg) x 10 = 1N			
4	Value of universal gravitational	l constant (G	i) is	
	(1) 9.8 m/s ²	(2) 6.67 x	10 ¹¹ N-m ² /kg ²	
	(3) 6.67 x 10 ⁻¹¹ N-m ² /kg	(4) 6.67 x	10-11 N-m²/kg²	
Sol.	(4)			
5.	Weight of a body of mass 10 k	g will be		
	(1) 9.8 N (2	2) 10 N	(3)98 N	(4) 980 N.
Sol.	(3) $w = mg = 10 \times 9.8 = 93$	3N		
6	A body is thrown vertically upw maximum height is	vard with velo	ocity 9.8 m/s . time t	aken by the body to reach at
	(1) 1 s	(2) 9.8 s	(3) 19	.6 s (4) 28 s.

Sol.	(1) v = u + at			
	0 = -9.8 + 9.8 + { at maximum height}			
	t = 1 sec.			
7	The rate of change of momentum of a body is equal to			
	(1) force applied on the	body	(2) pressure on the bod	ly
	(3) work done by the be	ody	(4) acceleration in the b	oody
Sol.	(1)			
8	The wave having comp	pression and rarefac	tion is known as	
	(1) transverse were		(2) longitudinal wave	
	(3) light wave		(4) ultraviolet rays.	
Sol.	(2)			
9	A particle of mass 10 g with an elastic collision	m is moving with ve . After collision velo	locity 5 m/s, collides with a st city of the first particle will be	ationary of equal mass particle
	(1) 10 m/s	(2) 5 m/s	(3) 0 (zero)	(4) -5 m/s.
Sol.	(3) By conservatio	n of momentum		
	$mu = mv_1 + mv_2$			
	U = v ₁ + v ₂ 1			
	Velocity of approach =	Velocity of Seperat	ion	
	$u - o = v_2 - v_1$ 2			
	by solving it $v_1 = 0$			
10	The frequency of a so	und source is 100 H	z. In four second number of v	ibrations will be
	(1) 800	(2) 400	(3) 100	(4) 25
Sol.	(2)			
11	The relation between velocity (v) , frequency (n') and wavelength (λ) of a wave is			of a wave is
	(1) $n = v\lambda$	(2) $\lambda = vn$	(3) $v = n\lambda$	(4) $n = \frac{1}{v\lambda}$
Sol.	(3)			
12	Normally at $0^{\circ}C$ tempe	erature the speed of	sound in air is	
	(1). 330 m/s	(2	?) 9.8 m/s	
	(3) 6420 m/s	(4) 3x 10 ⁸ m/s	
Sol.	(1)			

13 In dioptre, power of lens in the given ray diagram will be

(1) 110 watt (2) 220 watt (3) 440 watt (4) 880 watt.

Sol. (1) $V = VI = 220 \times 0.5 = 110 W$

18 Equivalent resistance between points A and B in the following circuit is

Sol. (1)

19 Heat generated when current flows through a resistance wire will be

(1)
$$H \propto I, H \propto R, H \propto t$$

(2) $H \propto I, H \propto R^2, H \propto t$
(3) $H \propto I^2, H \propto R, H \propto t$
(4) $H \propto I^2, H \propto R^2, H \propto t$

Sol. (3)
$$I = \frac{q}{t} = \frac{120C}{2x60 \sec} = 1A$$

20 If 120 coulomb charge flows through an electric circuit in 2 minutes then current in circuit will be

(1)
$$\frac{1}{60}A$$
 (2) 1 A (3) 2 A (4) 60 A

Sol. (2)

21 Value of 1 kilowatt – hour (1 kWh) in joule is
(1)
$$36 \times 10^7$$
 joule (2) 36×10^5 joule (3) 6.67×10^{11} joule (4) 3×10^8 joule

Sol. (2)

22 When the angle between force and displacement is 0 then formula of work is

(1)
$$W = fs \sin \theta$$
 (2) $W = \frac{fs}{\sin \theta}$ (3) $W = fs \cos \theta$ (4) $W = \frac{fs}{\cos \theta}$

Sol. (3)

23 In the diagram value of potential energy of the body is

- (1) 0.98 joule (2) 9.8 joule
- (3) 980 joule (4) 98000 joule

Sol. (1) P.E. = mgh

= 0.1 x 9.8 x 1

= 0.98 Joule

- 24 Spring constant of a spring is $K = 6 \times 10^3$ N/m. Work done to stretch it by 10^{-2} m from mean position is
 - (1) 30 joule (2) 3 joule
 - (3) 0.3 joule (4) 0.03 joule

Sol. (3)
$$W = \frac{1}{2}kx^{2}$$
$$W = \frac{1}{2} \times 6 \times 10^{3} \times (10^{-2})^{2}$$

$$=3\times10^{3}\times10^{-4}$$

25	Value of one horsepower is	
	(1) 3600 watt	(2) 1000 watt
	(3) 746 watt	(4) .220 watt

Sol. (3)

26 The name of fifth state of matter is

(1) Plasma	(2) Boson
(3) Fermion	(4) Bose – Einstein condensate.

- Sol. (4)
- 27 The first artificial satellite launched by India is

(1) Appollo	(2) Bhaskara

(3) Aryabhatta (4) Rohini

Sol. (3)

28	Monatomic molecule among the following is		
	(1) Oxygen	(2) Nitrogen	
	(3) Argon	(4) Hydrogen	
Sol.	(3) Argon is noble gas, exists in atomic form.		
29.	Physical change among the following is:		
	(1) $C(s) + O_2(g) \rightarrow CO_2(g)$	(2) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	
	$(3) H_2(g) + I_2(g) \rightarrow 2HI(g)$	(4) $H_2O(s) \rightarrow H_2O(l)$	
Sol.	(4)		
	Conversion of state is physical charnge		
30.	The process of formation of solid crystal from a saturated solution is called:		
	(1) distillation	(2) sublimation	
	(3) crystallisation	(4) filtration	
Sol.	(3)		
31.	Maximum number of electrons present in M-shell of an atom is :		
	(1) 8	(2) 18	
	(3) 32	(4) 50	
Sol.	(2)		
	No. of Maximum $e^{-} = 2n^2$		
	= 2(3)	² = 18	

- 32. Which of the following pairs is not an example of isotopes ?
 - (1) ${}^{40}_{18}Arand {}^{40}_{20}Ca$ (2) ${}^{35}_{17}Cland {}^{37}_{17}Cl$ (3) ${}^{12}_{6}Cand {}^{14}_{6}C$ (4) ${}^{16}_{8}Oand {}^{18}_{8}O$

Sol. (1)

Isotopes are atoms of same element having different mass number.

33. Number of molecules present in 0.36 g of water is

(1) 12.044 X 10 ²⁰	(2) 12.044 X 10 ²¹
(3) 12.044 X 10 ²³	(4) 12.044 X 10 ²⁵

Sol. (2)
--------	----

	No. of moles of water =	Giver	n mass/ molai	mass
		$=\frac{0.3}{13}$	$\frac{36}{8} = 0.02$	
	No of molecules=	No. o	f moles x NA	Ą
		=	0.02 x 6.02	22 x 10 ²³
		=	12.044 x 1	0 ²¹ molecules
34.	The numbers of protons and	neutrons	in ${}^{235}_{92}U$ are	respectively
	(1) 92, 235		(2) 92, 143	3
	(3) 143, 90		(4) 235 , 9	2
Sol.	(2)			
	No. of neutrons = $A - \overline{z}$	Z = 235-9	92 = 143	
	No. of protons	=	Z =	d2
35.	The element exhibiting varial	ble valen	cy is :	
	(1) Mg		(2) K	
	(3) Ca		(4) Cu	
Sol.	(4)			
	Cu shows valencies Cu^+ & Cu	J ²⁺		
36.	The molecular formula of alur	minium s	ulphate amor	ig the following is:
	(1) AISO ₄		(2	2) Al ₂ SO ₄
	(3) AL ₂ (SO ₄) ₃			(4) AI (SO ₄) ₃
Sol.	(3)			
	Al3+ \$042			
				Al ₂ (SO ₄) ₃
	3 2			

37. Molecule having triple bond among the following is:

(1) Cl ₂	(2) O ₂
(3) N ₂	(4) O ₃

Sol.	(3)		
	N=N		
38.	The ch	nemical formula of bleaching powder is	
	(1) Ca	OCI	(2) CaOCl ₂
	(3) Ca	0	(4) CaCl ₂
Sol.	(2)		
39.	Lewis	acid among the following is :	
	(1) H ₂ (0	(2) NH ₃
	(3) OF	ł	(4) AICL ₃
Sol.	(4)		
	Lewis	acid is electron acceptor. AICI3 is electror	n deficient molecule.
40.	The 'K	ing of Acids' among the following is	
	(1) HC		(2) HNO ₃
	(3) H ₂	SO ₄	(4) CH ₃ COOH
Sol.	(3)		
41. Example of homogeneous catalysis among the following is ;			following is ;
	(1) N ₂ (g) + 3H ₂ (g) 2NH ₃ (g)		
	(2) Vegetable oil (I) + H_2 (g) Vegetable ghee (I)		
	(3) 2SO ₂ (g) + O ₂ (g) 2SO ₃ (g)		
	(4) CH	$H_2 = CH_2 (g) + H_2 (g) - CH_3 - C$	CH ₃ (g)
Sol.	(3)	When catalyst & reactants are present i catalyst.	n same physical state, it is called homogeneous
42.	The na	ame of product [X] in the following reaction	n is :
	2CHC	Cl ₃ + O ₂ 2 [X] + 2HCl	
	(1) Ca	rbon monoxide	(2) Carbon dioxide
	(3) Ph	osgene	(4) Phosphine
Sol.	(3)	2 CHCL + O ₂ sunlight	

Sol. (3) $2 \operatorname{CHCl}_3 + O_2 \xrightarrow{\qquad \text{sunlight}} 2 \operatorname{COCl}_2 + 2\operatorname{HCL}_{(Chloroform) (Oxygen)} (Hydrochloric acid)$

43.	The pH of the solution obtained by talking equal mole of reactants in the following reaction be :		
	HCL + NaOH NaCl + 2H ₂ O		
	(1) 7.0	(2) Above 7.0	
	(3) Below 2.0	(4) Zero.	
Sol.	(1)		
	NaC I is salt of strong acid & strong base		
	pH of salt solution is 7		
44.	Transuranic element among the following is :		
	(1) Ac	(2) Pb	
	(3) Np	(4) La	
Sol.	(3)		
	Np is having atomic number is 93		
	Comes after uranium (z = 92)		
45.	Element having largest atomic radius among the following is :		
	(1) Li	(2) Na	
	(3) Rb	(4) Cs	
Sol.	(4)		
	Atomic radius increases down the group		
46.	The groups related to d-block elements is the m	nodern periodic table :	
	(1) group 3-12	(2) group 13-18	
	(3) group 1-2	(4) group 13-17	
Sol.	(1)		
47.	Non-crystalline allotrope of carbon is :		
	(1) Diamond	(2) Graphite	
	(3) Fullerene	(4) Gas carbon	
Sol.	(4)		
48.	IUPAC name of neopentane is :		
	(1) 2,3-dimethylpropane	(2) 2,2-dimethylpropane	
	(3) 2-methylbutane	(4) 2-ethylpropane	

	CH3	CH3 - C - CH.	3 Ct	13	Ī	
	2,2- Dimethylp	ropane				
49.	Natural polymers among the following is :					
	(1) Nylon-6, 6					(2) Terylene
	(3) Polythene					(4) Starch
Sol.	(4)					
50.	The ratio of numbers of hydrogen atoms in benzene and cyclohexane is :					
	(1) 1:1					(2) 1:2
	(3) 2:1					(4) 2:3
Sol.	(2)					
	Benzene is C_6H_6					
	Cyclohexane is	s C ₆ H ₁₂				
	No of H atoms	in Benze	ene	:	No of H atoms	in cyclohexane
		6	:		12	
		1	:		2	
51.	The water absorbed by roots of the planet is :					
	(1) Hygroscopic water					(2) Capillary water
	(3) Gravitational water					(4) All of these
Sol.	(2)					
52.	The disease caused by infectious bacteria present in sewage is					
	(1) Malaria					(2) Hydrophobia
	(3) Ascariasis					(4) Jaundice
Sol.	(4)					

53.	The writer of well known test "Ras Ratnakar" of Ayurveda is				
	(1) Charak	(2) Sushruta			
	(3) Nagarjuna	(4) Maharshi Patanjali			
Sol.	(3)				
54.	Three nucleated structure is formed by fertilization in er	nbryo sac of floering plant from			
	(1) Antipodal	(2) Egg			
	(3) Synergid	(4) Polar nuclei.			
Sol.	(4)				
55.	Sunderban National Park is situated in				
	(1) Thallophyta	(2) Bryophyta			
	(3) Pteridophyta	(4) Gymnosperm.			
Sol.	(3)				
56.	Sunderban National Park is situated in				
	(1) Rajasthan	(2) West Bengal			
	(3) Assam	(4) Gujarat.			
Sol.	(2)				
57.	Medicine is obtained from which part of Aloe Vera plant	?			
	(1) Root	(2) Stem			
	(3) Bark	(4) Leaf			
Sol.	(4)				
58.	The most abundant element found on earth is				
	(1) Silicon	(2) Gold			
	(3) Iron	(4) Oxygen			
Sol.	(4)				
59.	The total number of biodiversity hotspots in the world is				
	(1) 34	(2) 20			
	(3) 25	(4) 33.			
Sol.	(1)				

60.	The correct pair of plants having AIDS resistant properties is				
	(1) Tulsi, Giloya	(2) Giloya , Mint			
	(3) Shatavari, Turmeric	(4) Opium , Arjun.			
Sol.	(1)				
61.	Example of unicellular organis	sm is			
	(1) Salamander	(2) Chlamydomonas			
	(3) Ascaris	(4) Hydra.			
Sol.	(2)				
62.	In Human, the normal resting diastolic pressure is				
	(1) 120 mm/hg	(2) 100 mm/Hg			
	(3) 90 mm /Hg	(4) 80 mm/Hg			
Sol.	(4)				
63.	ay lead to excessive bleeding in case of injury?				
	(1) Vitamin K	(2) Vitamin A			
	(3) Vitamin C	(4) Vitamin D			
Sol.	(1)				
64.	Open circulatory system is a characteristic feature of which phylum?				
	(1) arthropoda	(2) amphibia			
	(3) Reptilia	(4) Aves.			
Sol.	(1)				
65.	The main wild animal in Kailadevi Sanctuary is				
	(1) Gharial	(2) Jungle fowl			
	(3) Bear	(4) Black Deer			
Sol.	(3)				
66.	The point of joining of the dendrite of one neuron with the axon of other is called				
	(1) Dendron	(2) Axon			
	(3) Cell Body	(4) Synapse			
Sol.	(4)				

67.	Genotypic ratio in F_2 generation of monohybrid cross is				
	(1) 1:3		(2) 1:2:1		
	(3) 3:1		(4) 2:1:1		
Sol.	(3)				
68. The	disease caused by define	ciency of insulin	in blood is		
	(1) Goitre		(2) Diabete	es	
	(3) Tetany		(4) Rickets	S.	
Sol.	(2)				
69.	Mineral essential for strengthening bones and teeth is				
	(1) Sodium		(2) Iron		
	(3) Potassium		(4) Calciu	ım.	
Sol.	(4)				
70.	The excretory waste of	reptiles is			
	(1) Uric acid	(2) Urea	(3) Hydrochloric acid	(4) Ammonia	
Sol.	(1)				
71.	What will be the cube ro	oot of perfect cul	be number 105823817?		
	(1) 463	(2) 473	(3) 483	(4) 493	
Sol.	(2) 473				
72.	If α and β are the zer $\alpha - \beta$?	oes of quadratic	c polynomial $x^2 + px + q$	then what will be the value of	
	(1) $\sqrt{q^2-4P}$	(2) p - q	(3) q - p	$(4) \sqrt{p^2 - 4q}$	
Sol 72	$(4) \sqrt{p^2 - 4q}$				
	$(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$				
	$\alpha^2 + \beta^2 = p^2 - 2q$				
	$\alpha - \beta = \sqrt{p^2 - 4q}$				

73. If a polynomial $f(x) = x^3 - 6x^2 + 10x + b$, where b is constant, is divided by x+2 then remainder is - 55. What will be the value of b?

(1) 10
(2) -10
(3) -3
(4) 3
Sol 73
(3) -3
(4) 3
Sol 73
(3) -3
(4) 3

$$f(x) = x^3 - 6x^2 + 10x + b$$

given, $f(-2) = -55$
(Remainder theorem)
(-8) - 6(4)-20 + b = -55
-52 + b = -55
b = -3
(22) x

74. If $\sqrt{1 + \frac{22}{144}} = (1 + \frac{x}{12})$, then what will be the value of x?

(1) 1 (2) 5 (3) 13 (4)
$$\frac{1}{5}$$

Sol 74 (1)
$$\sqrt{\frac{169}{144}} = 1 + \frac{x}{12} = \frac{13}{12} - 1 = \frac{x}{12}$$

 $= \frac{1}{12} = \frac{x}{12}$
 $= x = 1$

75. If n is an even natural number then the product n (n + 1) (n + 2) will be divisible by

(1) 24	(2) 15	(3) 7	(4) 0
$(\cdot) = \cdot$	(_) · · ·	(-)	() -

Sol 75. (1) for n(n+1) (n+2)

put n = 2

76. In the given figure, if AC = AE, AB is parallel to CD, $\angle BAC = 84^{\circ}$, $\angle ADC = 40^{\circ}$, the value of

Sol 76. (3)68°

77. In the given figure, two circles are shown with diameters AB and AC, where the AB = 7 cm and BC = 2.8 cm. Which one out of the given options represents the area of shaded region?

(1)
$$\pi(4.9-3.5)^2$$
 (2) $\pi(4.9^2-3.5^2)$ (3) $\pi(7^2-2.8^2)$ (4) $\pi(9.8^2-7^2)$

Sol 77. (2) $\pi[(4.9)^2-(3.5)^2]$
 $\frac{AC}{2} = \frac{9.8}{2} = 4.9$
Area of Bigger Circle = $\pi(4.9)^2$
 $\frac{AB}{2} = \frac{7}{2} = 3.5$
Area of smaller Circle = $\pi(3.5)^2$
Area of should region = $\pi(4.9^2-3.5)^2$)
78. If equations 2x + 3y = 13 and 4x-ky = 4 are representing two parallel lines then what will be

- 78. the value of k?
- (2) -8 (3) 6 (1) 8 (4) -6 2x + 3y = 13Sol. 78 (4) -6 4x - ky = 4for 11el lines, $\frac{2}{4} = \frac{3}{-k} \neq \frac{13}{4}$ k = -6

79. In the given diagram, what will be the sum of $\angle A + \angle B + \angle C + \angle D + \angle E$?

Sol 79 (2) 180°

80. If $\sec \theta + \tan \theta = p$, then the value of $\sec \theta$ is

(1) $\frac{2P}{p^2+1}$ (2) $\frac{1}{p}$ (3) $\frac{p^2+1}{2p}$ (4) $\frac{p}{2}$

Sol 80

then $\sec 2\theta - \tan 2\theta = 1$

(3) $\sec \theta = \frac{p^2 + 1}{2P}$ $\sec \theta + \tan \theta = P$

$$\sec \theta - \tan \theta = \frac{1}{\sec \theta + \tan \theta} = \frac{1}{p}$$
$$\sec \theta + \tan \theta = p$$
$$\frac{\sec \theta - \tan \theta = p}{\sec \theta - \tan \theta = p}$$
$$\sec \theta = \frac{p^2 + 1}{2p}$$
$$\sec \theta = p = \frac{1}{p}$$

(4) 360°

- In a group of cows and buffaloes, the number of cows are double than the number of buffaloes. 10 more cows and 10 more buffaloes came and mixed with the group. How does this affect the probability of selecting a cow at random from the group newly formed?
 - (1) Probability will increase (2) Probability will not change
 - (3) Probability will decrease (4) None of these

Sol. 81 (3) No. of Buffaloes = x = Let 10

=

No. of cows = 2x = 20

P (C) =
$$\frac{2x}{3x} = \frac{2}{3} = \frac{20}{30} = 0.667$$

then No. of cows = 2x + 10 = 20 + 10

No. of buffalous = x + 10

$$= \frac{2x+10}{3x+20} = \frac{30}{50} = \frac{3}{5} = 0.6$$
$$\frac{15 \times 20}{30} = 12 \text{ cm}$$

25

82. In the given figure, ΔPOQ is a right angled triangle in which $\angle POQ = 90^{\circ}$, OR is perpendicular to PQ. If OP= 20 cm, OQ = 15 cm, then the length of OR will he

Sol (1) 12 cm

83. If the length of a rectangle is increased by 50%, by what percentage would the width have to be decreased so that the area of rectangle does not change?

1

(1) 37.5% (2) 60% (3) 50% (4)
$$33\frac{1}{3}\%$$

Sol. 83 (4) $33\frac{1}{3}\%$

Т

A = I x b

I Newl = 1.5l x b

$$lb = 1.5l \times b_{1}$$

$$b_{1} = \frac{b}{1.5}$$

$$\frac{b - \frac{b}{1.5}}{b} \times 1w$$

$$= \frac{1.5b - b}{15 \times b} \times 100 \frac{15b}{15b} = \frac{1}{3} \times 100 = 33\frac{1}{3}\%$$

84. If the lengths of diagonals of a rhombus are 18 cm and 24 cm, then the perimeter of rhombus is

(1)
$$45 \text{ cm}$$
(2) 42 cm (3) 60 cm (4) 70 cm Sol 84 (3) $p = 15 \times 4 = 60 \text{ cm}$

85. In the given figure, PQ is a tangent of a circle whose Centre is O which touches the circle at point R. If $\angle TRQ = 40^\circ$, then the measure of $\angle RTO$ will be of

П

86. If
$$\sin^2 \theta + \sin \theta = 1$$
, then what will be the value of $\cos^8 \theta + 2\cos^6 \theta + \cos^4 \theta$?

Sol 86. (3) $Sin\theta = 1 - sin^2 \theta = cos \theta$

$$\cos\theta + 2\cos^{6}\theta + \cos^{4}\theta$$
$$(\cos^{4}\theta + \cos^{2}\theta)^{2}$$
$$= (\sin^{2}\theta + \cos^{2}\theta)^{2} = 1^{2} = 1$$

87. Which term of the A.P. 20,
$$19\frac{2}{5}$$
, $18\frac{4}{5}$, $18\frac{1}{5}$,.....will be the first negative term?

Sol. 87 (1) a = 20, d = $19\frac{2}{5} - 20 = \frac{97}{5} - 20 = \frac{97 - 100}{5} = -\frac{3}{5}$

an = 0
a + (n-1) d = 0
20 + (n-1) x
$$-\frac{3}{5}=0$$

20 = (n-1) $\times \frac{3}{5}$
 $\frac{100}{3} = n - 1$
 $n = 33.33 + 1$
n = 34.33
n = 35

88. If an equilateral triangle whose two of the vertices are (0, 0) and (2a, 0) then what will be coordinates of its third vertex which is in first quadrant?

(1)
$$(a\sqrt{2}, a\sqrt{2})$$
 (2) $(a, 2a)$ (3) (a, a) (4) $(a, a\sqrt{3})$
Sol 82 (4)
89. If the radius of a circular wheel is $\frac{7}{4}$ meter, then the number of revolutions after travelling 11 km distance will be (If $\pi = \frac{22}{7}$)
(1) 1000 (2) 1100 (3) 1200 (4) 1300
Sol 89 (1) $r = \frac{7}{4}m$, D=11 km = 11000 m
 $n = 2\pi r = D$
 $n \times 2 \times \frac{22}{7} \times \frac{7}{4} = 1000$
 $n = 1000$
90. If $x + y = 90^{\circ}$, then the value of $\cos^{2} x + \cos^{2} y - 5$ will be
(1) 0 (2) -1 (3) -4 (4) -5
Sol 90 (3) $\cos \theta + \cos^{2}(90 - x) - 5$
 $\cos^{2} n + \sin^{2} n - 5$
 $1 - 5 = -4$