

1. Plasma membrane is a semipermeable membrane, water can move by osmosis and gases can cross by diffusion.
2. Vacuole in plant cell is larger than animal cell.
3. Mitochondria are more in cardiac muscles to generate more energy.
4. Grafting is possible among dicot plants due to presence of cambium.
5. Collenchyma have thickened wall at the corners \& have either very little intercellular spaces or absent.
6. The Marsilea do not produce seed but pinus produces.
7. No option is correct (according to given information in the question).
8. Cyanobacteria (Blue green algae) if placed in pure water they will swell but not burst due to presence of cell wall.
9. The genotype of II-3 should be Hh and II-4 should be hh as these are formed by the cross of $\mathrm{Hh} \times \mathrm{hh}$.
10. 50% plants will produce wrinkled seeds.

TTRR \times ttrr

50% of plants will have wrinkled seeds.
11. If no CO_{2} then no photosynthesis and no oxygen \& earth would be devoid of life.
12. Producers will gate 1% of 100000 kcal

Producers \rightarrow Primary \rightarrow Secondary \rightarrow Tertiary
1000 kcal 100 kcal 10 kcal 1 kcal
(According to 10\% law)
13. No fertilisation will be there so no fruit formation.
14. $\mathrm{m}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{xCr}_{2} \mathrm{O}_{3}+\mathrm{yN}_{2}+\mathrm{zH}_{2} \mathrm{O}$

After Balancing
$1\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} 1 \mathrm{Cr}_{2} \mathrm{O}_{3}+1 \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
\therefore The stoichiometric coefficients $\mathrm{m}, \mathrm{x}, \mathrm{y}$ and z are respectively $1,1,1,4$.
15. $2 \mathrm{H}_{2} \mathrm{~S}+1 \mathrm{SO}_{2} \longrightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$

As per balanced chemical equation,
1 mole of SO_{2} produces $\longrightarrow 3$ mole of sulphur
$\Rightarrow 64 \mathrm{~g} \mathrm{SO}_{2}$ produces $\longrightarrow 96$ grams Sulphur
$\therefore 1$ gram SO_{2} produces $\longrightarrow \frac{96}{64}$ grams sulphur $=1.5 \mathrm{~g}$ sulphur.
Hence statement 2 is wrong.
16.

Sample	With blue litmus	With red litmus	With phenolphi nalein
A	-	Turns blue	Turns pink
B	-	-	-
C	Turns red	-	-

The data provided in the above table indicates that the pH of the following solutions will be as follows:
pH of solution $\mathrm{A}>7$
pH of solution $\mathrm{B}=7$
pH of solution $\mathrm{C}<7$
Now as per options provided,
pH of $\mathrm{CH}_{3} \mathrm{COO} \mathrm{Na}(\mathrm{aq})>7$ (salt of strong base and weak acid)
pH of $\mathrm{NaCl}_{(\mathrm{aq})}=7 \quad$ (salt of strong acid and strong base)
pH of $\mathrm{FeCl}_{3}<7$
(salt of strong acid and weak base)
$\therefore \mathrm{A}=\mathrm{CH}_{3} \mathrm{COONa} ; \mathrm{B}=\mathrm{NaCl} ; \quad \mathrm{C}=\mathrm{FeCl}_{3}$.
17. Acetic acid and water are miscible with each other, so separating funnel method can't be useful. The correct method of separation of miscible liquids is distillation. Hence statement III is wrong.
18. $\quad \mathrm{A} \xrightarrow{\text { alk. } \mathrm{KMnO}_{4}} \mathrm{~B}$
$\mathrm{A} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{C}$ and D
The reactions (I) and (II) are as follows
$\underset{(A)}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \xrightarrow[(B)]{\text { alk. } \mathrm{KMnO}_{4}} \mathrm{CH}_{3} \mathrm{COOH} \quad$ \{Oxidation of alcohol\}

And,
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \underset{\text { (C) }}{\mathrm{C}_{2} \mathrm{H}_{4}}+\underset{\text { (D) }}{\mathrm{H}_{2} \mathrm{O}} \quad$ \{Dehydration of alcohol\}

$$
\begin{aligned}
\therefore \mathrm{A} & =\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
\mathrm{~B} & =\mathrm{CH}_{3} \mathrm{COOH} \\
\mathrm{C} & =\mathrm{C}_{2} \mathrm{H}_{4} \\
\mathrm{D} & =\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

19. The reactions are as follows:
(I) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { acd. } \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}} \mathrm{CH}_{3} \mathrm{COOH}$

This is a redox reaction (Oxidation of alcohols)
(II) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \xrightarrow{\text { NiCatalyst }} \mathrm{C}_{2} \mathrm{H}_{6}$

This is an addition reaction (Hydrogenation of alkenes)
(III) $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \xrightarrow{h v} \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$

This is a substitution reaction (chlorination of methane)
(IV) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}$

This is an elimination reaction (Dehydration of alcohol)
20. Beaker A
$\mathrm{FeSO}_{4}+\mathrm{Cu} \longrightarrow$ No Reaction
Beaker B
$\mathrm{FeSO}_{4}+\mathrm{Zn} \longrightarrow \mathrm{ZnSO}_{4}+\mathrm{Fe}$
The above observations indicate that Zinc is most reactive and copper is least reactive.
Hence the order of reactivity will be

$$
\mathrm{Zn}>\mathrm{Fe}>\mathrm{Cu}
$$

21. Sulphur upon heating in a spatula in presence of air forms,

$$
\mathrm{S}+\mathrm{O}_{2} \xrightarrow{\Delta} \underset{\text { acidic oxide }}{\mathrm{SO}_{2}}
$$

SO_{2} being an acidic oxide when comes in contact with moist Blue litmus paper, turns the litmus paper red, due to the formation of sulphurous acid.
22. In sample A,

5 g of sample contains 1.25 g Z

$$
\Rightarrow \text { Weight of } Y=5-1.25=3.75 \mathrm{~g}
$$

In sample B,

$$
\begin{aligned}
& 75 \% \text { of } \mathrm{y} \text { is present by weight } \\
& \Rightarrow 100 \mathrm{~g} \Rightarrow 75 \mathrm{~g} \text { of } \mathrm{Y}
\end{aligned}
$$

$\therefore 5 \mathrm{~g}$ of sample will weigh

$$
=\frac{75}{100} \times 5=3.75 \mathrm{~g}
$$

\therefore Given Data illustrates law of constant proportion.
23. Element ${ }_{13} \mathrm{X}-2,8,3$

Element ${ }_{17} \mathrm{Y}-2,8,7$
\therefore According to their electronic configuration,
Valency of $x=3$
Valency of $y=1$
\therefore Compound formed $=\mathrm{XY}_{3}$
The nature of the compound is covalent due to high polarization [Fajan's Rule], Therefore Bond formed between X and Y is covalent.
24. (I) $\mathrm{C}-12$ and $\mathrm{C}-14$ are isotopes of each other.
(II) Carbon reacts with oxygen to form carbon dioxide/carbon monoxide which is a covalent compound
(III) $\mathrm{Ca}-40$ and $\mathrm{Ar}-40$ are isobars of each other.
(IV) $2 \mathrm{Ca}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CaO}$

$$
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { (Lime Water) }}{\mathrm{Ca}(\mathrm{OH})_{2}}
$$

Therefore, statements (III) and (IV) are correct.
25. The atomic size increases in a group from top to bottom due to addition of new shells with each period.
So correct order of atomic radii will be,
$\mathrm{Li}<\mathrm{K}<\mathrm{Rb}<\mathrm{Cs}$
26. (I) Kinetic energy is directly proportional to temperature. So with an increase in temperature, kinetic energy also increases.
(II)

(III) Movement of particles from higher concentration to lower concentration is called diffusion.
(IV) Rate of evaporation is directly proportional to temperature. Therefore with an increase in temperature, rate of evaporation also increases.
27. Speed of train $=90 \times \frac{5}{18}=25 \mathrm{~m} / \mathrm{sec}$
$\mathrm{T}=\left[\frac{1500}{25}-\frac{1250}{300}\right]+\frac{250}{300}$
$\mathrm{T}=56.67 \mathrm{sec}$
28. Speed during upstream $=10 \mathrm{~km} / \mathrm{hr}$

Speed during downstream $=20 \mathrm{~km} / \mathrm{hr}$
Average speed $=\frac{2 \mathrm{v}_{1} \mathrm{v}_{2}}{\mathrm{v}_{1}+\mathrm{v}_{2}}=\frac{2(10)(20)}{10+20}$

$$
=\frac{40}{3} \mathrm{~km} / \mathrm{hr} .
$$

29. Let Q travels x and P travels $(525-x) m$
$\therefore \quad \mathrm{x}=\frac{1}{2}(2) \mathrm{t}^{2}=\mathrm{t}^{2}$
and $525-x=20 t$
From (1) and (2)
$t^{2}+20 t-525=0$
$\mathrm{t}=15 \mathrm{sec}$
and $\mathrm{x}=\mathrm{t}^{2}=225 \mathrm{~m}$
30. Rate of energy dissipation
$\Rightarrow \frac{\frac{1}{2} \mathrm{mv}^{2}}{\mathrm{t}}=\frac{\frac{1}{2}\left(50 \times 10^{-3}\right)(80)^{2}}{8}$
$\Rightarrow 20 \mathrm{~J} / \mathrm{sec}$.
31. After 3 bounces total energy will be
$\Rightarrow\left(\frac{9}{10}\right)^{3} \mathrm{mgh} \Rightarrow\left(\frac{9}{10}\right)^{3}(0.1)(10)(1)$
$=\left(\frac{9}{10}\right)^{3} \mathrm{~J}$
at half the maximum height
K.E $=\frac{\left(\frac{9}{10}\right)^{3}}{2}=0.36 \mathrm{~J}$
32. $\mathrm{T}=$ truweight - B.Force
$\mathrm{T}=(3 \mathrm{~g})=\frac{\mathrm{Q}}{3}\left(\frac{3}{\rho}\right)(\mathrm{g})=2 \mathrm{~g}$
\therefore Spring balance reads 2 kg
33. 1 Kg coal produces $20 \times 10^{6} \times \frac{25}{100}$

$$
\Rightarrow 5 \times 10^{6} \mathrm{~J} / \mathrm{kg}
$$

$1 \mathrm{Kwh}=3.6 \times 10^{6} \mathrm{~J}$.
\therefore for 1 kwh coal required

$$
=\frac{3.6 \times 10^{6}}{5 \times 10^{6}}=\frac{3.6}{5} \mathrm{~kg}
$$

Cost will be $=\frac{3.6}{5} \times 5=$ Rs. 36
34. Option is self expanatory.
35. $\quad 2 d=v \times t$
$d=\frac{v \times t}{2}$
$\mathrm{d}=\frac{1450 \times 4}{2}$
$=2.900 \mathrm{~km}$.
36. Image of tip will form at pole itself for image of other point
$u=-10 \mathrm{~cm} ; f=\frac{-40}{2}=-20 \mathrm{~cm}$
as $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
we get $v=+20 \mathrm{~cm}$
\therefore Size of image will be 20 cm .
37.

$R_{\text {eq }}=\frac{10,000 \times 6,000}{(10,000+6,000)}+4000$
$R_{\text {eq }}=7750 \Omega$
$i=\frac{10}{7750}$
$v_{1}=\frac{10}{7750} \times 4000=5.16$
So $\mathrm{v}_{2}=10-5.16$

$$
\mathrm{v}_{2}=4.838 .
$$

38. $P_{A}=\frac{E^{2}}{N^{2} R} ; P_{B}=\frac{E^{2}}{R}$
$P_{A T}=\frac{E^{2}}{N R} ; P_{B T}=\frac{N E^{2}}{R}$
\therefore We get $P_{E}=N^{2} P_{A}$
39. $\frac{1}{3} R$ in series with (2R P2R) in series with (2RP2R) We get $R_{A B}$ as $2 R$
40. Average Speed $=\frac{\text { total distance }}{\text { total time }}$

Average Speed $=\frac{1+1^{\prime}+\left(1-1^{\prime}\right)}{\frac{1}{2}+\frac{1^{\prime}}{1.5}+\frac{\left(1-1^{\prime}\right)}{0.5}}$
Givne $\frac{1^{\prime}}{1.5}=\frac{1-1^{\prime}}{0.5} \therefore 1^{\prime}=\frac{31}{4}$
From (1) and (2)
We get average speed $=1.33 \mathrm{~m} / \mathrm{sec}$
41.

$$
\left.x^{2}+2 a x+a^{2} \begin{array}{l}
\frac{x-2 a}{x^{3}-3 p x+2 q} \\
x^{3}+a^{2} x+2 a x^{2} \\
\frac{-}{-2 a x^{2}+x\left(-3 p-a^{2}\right)+2 q} \tag{i}\\
\frac{-2 a x^{2}-4 a^{2} x-2 a^{3}}{+}++\quad+
\end{array}\right]
$$

$-3 p+3 a^{2}=0$
$2 q+2 a^{3}=0$
$\Rightarrow a^{2}=p \Rightarrow a=\sqrt{p}$
Put in (ii)
$\Rightarrow 2 q+2(\sqrt{\mathrm{p}})^{3}=0$
$\Rightarrow q=-(\sqrt{p})^{3}$
$q=-p \sqrt{p}$
$q^{2}=p^{3}$
42. $\left(3^{\frac{1}{2}}-1\right)\left(3^{\frac{1}{2}}+3^{\frac{1}{4}}+1\right)\left(3^{\frac{1}{2}}-3^{\frac{1}{4}}+1\right)$

$$
\begin{align*}
& =\left(3^{\frac{1}{2}}-1\right)\left[\left(3^{\frac{1}{2}}+1\right)+3^{\frac{1}{4}}\right]\left[\left(3^{\frac{1}{2}}+1\right)-3^{\frac{1}{4}}\right] \\
& =\left(3^{\frac{1}{2}}-1\right)\left[\left(3^{\frac{1}{2}}+1\right)^{2}-\left(3^{\frac{1}{4}}\right)^{2}\right] \\
& =(\sqrt{3}-1)[3+1+2 \sqrt{3}-\sqrt{3}] \\
& =(\sqrt{3}-1)[4+\sqrt{3}] \\
& =3 \sqrt{3}-1 \tag{i}
\end{align*}
$$

43. $m x+2 y=10$
$3 x-2 y=0$
$\Rightarrow 3 x=2 y$
Put in equation (i)
$(m+3) x=10$
$x=\frac{10}{m+3}$
$y=\frac{3}{2} \times \frac{10}{m+3}=\frac{15}{m+3}$
$\mathrm{Q} x$ and y and integers
$\therefore \mathrm{m}=-2,2,-8$
Option (2) or (3) correct.
44. $a_{n}=a+(n-1) d$

If d increased to $d+1$
$a_{n}^{1}=a_{n}+19$
$a+(n-1)(d+1)=a+(n-1) d+19$
$(n-1) d+n-1=(n-1) d+19$
$\mathrm{n}=20$
$\mathrm{a}_{5}=28$
$a+4 d=28$
$\frac{a+a+(n-1) d}{2}=61$
$2 a+19 d=122$
From equation (i) and (ii)
$2 a+19 d=122$
$2 a+8 d=56$
$11 d=66$
$d=6$
$a=4$
$\mathrm{a}_{10}=\mathrm{a}+9 \mathrm{~d}$
$=4+54$
$=58$
45. $S_{n}=300$ years
a $=9$ years
$d=\frac{1}{4}$ year
$\frac{n}{2}\{2 a+(n-1) d\}=300$
$\frac{n}{2}\left\{18+(n-1) \times \frac{1}{4}\right\}=300$
$\mathrm{n}\{72+\mathrm{n}-1\}=300 \times 8$
$n^{2}+71 n-2400=0$
$(\mathrm{n}+96)(\mathrm{n}-25)=0$
$\mathrm{n}=25$
$\mathrm{a}_{25}=9+24 \times \frac{1}{4}$
$=(9+6)$ year
$=15$ years
46. let number of persons $=\mathrm{n}$

Indivisual share $=\frac{27000}{\mathrm{n}}$
$\frac{27000}{n+20}=\frac{27000}{n}-480$
$\Rightarrow 480=27000\left[\frac{1}{n}-\frac{1}{n+20}\right]$
$\Rightarrow \mathrm{n}(\mathrm{n}+20)=\frac{27000 \times 20}{480}$
$\Rightarrow \mathrm{n}^{2}+20 \mathrm{n}-1125=0$
$\Rightarrow(\mathrm{n}+45)(\mathrm{n}-25)=0$
$\Rightarrow \mathrm{n}=25$
47. area of $\Delta \mathrm{ABC}=\frac{1}{2}|0(y-21)+x(21-0)+18(0-y)|$
$=\frac{1}{2}|21 x-18 y|$
$=\frac{3}{2}|7 x-6 y|$

Q x and y are integer
\therefore it will be minimum at $\mathrm{x}=\mathrm{y}=1$
\therefore minimum integral value of $|7 x-6 y|=1$
\therefore minimum non zero area of $\Delta A B C=\frac{3}{2} \times 1=\frac{3}{2}$ sq. unit
48. $\frac{1-\cos \theta}{\sin \theta}=\frac{1}{5}, 0^{\circ}<\theta<90^{\circ}$
$\Rightarrow 5-5 \cos \theta=\sin \theta$
$\Rightarrow 5 \sec \theta-5=\tan \theta$
$\Rightarrow 5 \sqrt{1+\tan ^{2} \theta}=5+\tan \theta$
$\Rightarrow 25\left(1+\tan ^{2} \theta\right)=25+10 \tan \theta+\tan ^{2} \theta$
$\Rightarrow 24 \tan ^{2} \theta-10 \tan \theta=0$
$12 \tan ^{2} \theta-5 \tan \theta=0$
$\tan \theta(12 \tan \theta-5)=0$
$\tan \theta=0$ ar $\tan \theta=\frac{5}{12}$
$1+\tan \theta=1$ or $\frac{17}{12}$
49. let $B C=x m$

DB $=x+7.3 m$
$A B=D B$
$B C=10 \mathrm{~m}$
let $\angle B A C=\theta$
$\tan \theta=\frac{B C}{A B}$
$=\frac{10}{17.3}$
$=0.578$
$\theta=30^{\circ}$
50. $x^{2}-2 m n+m^{2}-1=0$
$\alpha+\beta=2 \mathrm{~m}$
$\alpha \beta=m^{2}-1$

$\therefore-2<\frac{2 m}{2}<4$
$-2<m<4$
$\mathrm{f}(-2)>0 \quad \mathrm{f}(4)>0$
$m^{2}+4 m+3>0 \quad m^{2}-8 m+15>0$
$(m+3)(m+1)>0 \quad(m-3)(m-5)>0$
$m<3$ or $m>-1 \quad m<3$ or $m>5$
$\therefore-1<m<3$
51. $\mathrm{n}(\mathrm{s})=11 \times 11=121$
$p(E)=\frac{13}{121}$
$E=\{(0,0),(1,0),(1,1),(2,0),(-1,0),(-2,0),(0,2),(0,1),(0,-1),(0,-2),(-$ $1,1),(1,-1),(-1,-1)\}$
52. $\quad P$ is mid point of $C D$.
$\operatorname{ar}(\mathrm{ANM})=\frac{1}{4} \operatorname{ar}(\mathrm{AMPD})$
$=\frac{1}{8} \operatorname{ar}(A B C D)$
$\therefore \frac{\operatorname{ar}(\mathrm{ANM})}{\operatorname{ar}(\mathrm{ABCD})}=\frac{1}{8}$

53. by carpet law
$\operatorname{area}(\mathrm{GHJC})=\operatorname{ar}(\mathrm{BGE})+\operatorname{ar}(\mathrm{AEHF})+$ $\operatorname{ar}(\mathrm{FJD})$
$=503+1113+408$
$=2024$

55. $\mathrm{AD}=\mathrm{DC}$

In $\triangle A D C$
$2 \theta=80^{\circ}$
$\therefore \theta=40^{\circ}$
In $\triangle A B C$
$A B=A C$

$\therefore 2 \alpha=160^{\circ}$
$\alpha=80^{\circ}$
In \square ABCD
$\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}$
\therefore ABCD is a cyclic \square
\therefore length of DC will be double of length CB
Q Angle opposite to chord CD is double of angle opposite to chord BC.
\therefore the given information is wrong
56. In $\triangle \mathrm{PBD}=\mathrm{BP}^{2}+\mathrm{PD}^{2}=\mathrm{BD}^{2}$

In $\triangle P A D=P A^{2}+P^{2}=A C^{2}$
from equation (i) and (ii)
$\mathrm{BP}^{2}+\mathrm{PA}^{2}+\mathrm{PD}^{2}+\mathrm{PC}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$
$\left(\mathrm{BP}^{2}+\mathrm{PC}^{2}\right)+\left(\mathrm{PA}^{2}+\mathrm{PD}^{2}\right)=\mathrm{BD}^{2}+A C^{2}$
$B C^{2}+A D^{2}=9^{2}+8^{2}$
$A D=\sqrt{81+64-100}$

$\mathrm{AD}=3 \sqrt{5}$
arWADEF $=(A D)^{2}=45$
57. using power of point for the circle w.r.t. point ' C '
CD.CB = CG.CF
$\frac{\mathrm{a}}{2} \cdot \mathrm{a}=\frac{2}{3} \mathrm{CF}^{2}=\frac{2}{3}\left(\frac{\mathrm{a}^{2}}{2}+\frac{\mathrm{b}^{2}}{2}-\frac{\mathrm{c}^{2}}{4}\right)$
$\frac{a^{2}}{2}=\frac{a^{2}}{3}+\frac{b^{2}}{3}-\frac{c^{2}}{6}$
$a^{2}+c^{2}=2 b^{2}$

also, 'C' is obtuse $\Rightarrow \cos \mathrm{C}<0$
$a^{2}+b^{2}<c^{2}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}<2 \mathrm{~b}^{2}-\mathrm{a}^{2}$
$\Rightarrow 2 \mathrm{a}^{2}<\mathrm{b}^{2}$
$\Rightarrow \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}<\frac{1}{2}$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}}<\frac{1}{\sqrt{2}}$
58. $a x^{2}+b x+c=0$
$\mathrm{Q} a+\mathrm{b}+\mathrm{c}=0$
$1+\beta=-\frac{b}{a}, 1 \cdot \beta=\frac{c}{a}$
$\beta=\frac{c}{a}$
Roots are $1, \frac{c}{a}$
59. $\mathrm{OP}=\mathrm{r}=\frac{7}{2}$
$O Q=3$
area of top circular surface of pit $=$ $\pi\left(\frac{7}{2}\right)^{2}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=\frac{77}{2}$

$=38.5 \mathrm{~m}^{2}$
area of the plot on which dug soil is spreaded $=28 \times$
14-38.5
$=353.5 \mathrm{~m}^{2}$
volume of dug soil $=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 3=38.5 \mathrm{~m}^{3}$
\therefore value of increment in the level of remaining plot $=\frac{38.5}{353.5} ; 10.9 \mathrm{~cm}$
60. $\sum x_{i}-50 n=-10$
$\sum x_{i}=50 n-10$
$\sum x_{i}-46 n=70$
$\sum x_{i}=46 n+70$
From (i) and (ii)
$50 n-10=46 n+70$
$4 n=80$
$\mathrm{n}=20$
$\sum \mathrm{x}_{\mathrm{i}}=990$
$\bar{x}=\frac{990}{20}=49.5$
$\therefore \bar{x}-48=49.5-48=1.5$
61. Arrangement of the division of power between different religious communities is not true.
62. The president appoints a leader who can muster majority support in the Lok Sabha and can prove majority support in the Lok Sabha.
63. $\quad B$ and C options are not presenting true picture.
64. In some cases caste division leads to tensions, conflict and even violence.
65. A political prisoner during Pinochet dictatorship.
66. Freedom to acquire, hold and dispose any property any where in country.
67. $A-G, B-H, C-E, D-F$.
68. It lays down limits on the powers of the govt. And tells us what the rights of the citizens are.
69. Right to freedom.
70. Both option A and D
71. Non-availability, inaccessibility, non-affordability.
72. Option A, C and D
73. Options a, b, d, e, f
74. Both A and R are true and R is the correct explanations of A.
75. Fall in productivity of the agricultural workers.
76. Rate of extraction of all resources is less than rate of its regeneration and creation.
77. Rithish, Rahul, Ramesh, Ramu
78. Let the carpenter pay on the basis of hours of work.
79. Disguised unemployment.
80. Right to choose
81. Jharkhand - Odisha - Andhra Pradesh - Telangana - Maharashtra - Madhya Pradesh
82. Ganga - Narmada - Godabari - Krishna - Penneru - Palar
83. Formation of high pressure over Tibetan plateau.
84. Meghalaya
85. Both are true and statement 1 provides explanations for statement 2.
86. Chennai is not an inland riverine port.
87. 8:16am-6:48am
88. Both are true
89. Wetlands
90. A3, B1, C4, D2
91. I, II, and IV
92. Oak leaves stand for heroism.
93. I, III and IV
94. I, II and IV
95. I, II and III
96. III and IV
97. Both are true and R is the correct explanation of A.
98. I, II and IV
99. Acquiring new territories to enhance the area of the mother country.
100. I, II and IV

Answer Key NTSE Stage 2 2020-21 (SAT)

