

> NTSE STAGE II
> CODE: 13-15 (2019-2020) MENTAL ABILITY TEST (MAT) Held on: February 14, 2021

HINTS \& SOLUTIONS

1.	3	2.	3	3.	1	4.	3
5.	No option correct.			6.	2	7.	4
8.	4						
9.	2	10.	1	11.	2	12.	2
13.	4	14.	2 or 3	15.	1	16.	1
17.	No option correct.			18.	1	19.	3
20.	4						
21.	2	22.	2	23.	3	24.	3
25.	3	26.	2	27.	3	28.	3
29.	2	30.	1	31.	3		
32.	2	33.	2	34.	1 \& 3 both		
35.	2	36.	3	37.	3	38.	2
39.	1	40.	2	41.	2	42.	2
43.	4	44.	4	45.	4	46.	1
47.	4	48.	4	49.	4	50.	1
51.	4	52.	4	53.	4	54.	2
55.	3	56.	3	57.	4	58.	2
59.	No option correct.			60.	3	61.	3
62.	3	63.	3	64.	2	65.	4
66.	4	67.	1	68.	1	69.	1
70.	1	71.	2	72.	4	73.	1
74.	4	75.	2	76	1	77.	3
78.	3	79.	4.	80.	3	81.	1
82.	2	83.	1.	84.	3	85.	4
86.	2	87.	4.	88.	2	89.	3
90.	1	91.	3	92.	1.	93.	4
94.	2	95.	2	96.	2	97.	4
98.	3	99.	1	100.	1		

1. 3

Sol. (Sum of position number of letters present in that word) x (number of letters present in that word)
2. 3

Sol. $1^{2}+2^{2}+4^{2}=21$
$3^{2}+8^{2}+5^{2}=98$
Similarly, $\left.7\right|^{2}+6^{2}+3^{2}=94$
3. 1

Sol.

Total number of cubes $=3 \times 4 \times 6=72$
All inner central cubes (after removing 2 faces of $4 \times 6,2$ faces of 4×3 and 2 faces of 3×6 cubes)
4. 3

Sol. 4 edges each common to red and yellow faces having 3 cubes each.

5. No option correct.

Sol. Since given statement is 'project work' which means 34, now from statement I and given statement it is clear that 3 is 'project' so 4 is 'work' and from statement II and given statement it is clear that 4 is 'work' so 3 is 'project' so we can determine answer from both the statements individually.
So, no such option matches.
6. 2

Sol. From the given statements it is clear that tortoise who like to fly will also like to jump as all tortoise like to jump.
7. 4

Sol. To form 9^{0} between $3 \mathrm{pm} \& 4 \mathrm{pm}$ (minute hand ahead of hour hand), minute hand has to travel 99° from 3 pm .
i.e, $\frac{99}{5.5}=18$
\therefore Exact time $=3$ hrs 18 min
8. 4

Sol. Position number of inner letter is written on outer side and position number of outer letter is written in opposite side (in square)
9. 2

Sol.

Not included letters $\rightarrow(A, B),(E, F),(I, J),(O, P),(U, V)$
Start time $\rightarrow \mathrm{N}: \mathrm{T}$ 8:00

End time $\rightarrow \quad \mathrm{S}: \mathrm{K}$
11:25
Total time $\rightarrow 3$ hrs 25 min
Number of period $=5$
Break time $=7 \mathrm{~min}, 9 \mathrm{~min}, 11 \mathrm{~min}, 13 \mathrm{~min}$
$=40 \mathrm{~min}$ (total)
\therefore Duration of each period $=\frac{180+25-40}{5}=33 \mathrm{~min}$
10. 1

Sol.

Similarly,

Either sum or difference of position number of corresponding letters = total number of letters present in that word.
11. 2

Sol.

	M	P	B	K	L	V
Dancing	\checkmark	\checkmark				
Acting	\checkmark	\checkmark				
Singing		\checkmark	\checkmark	\checkmark		\checkmark
Playing tabla	\checkmark		\checkmark	\checkmark	\checkmark	
Playing guitar		\checkmark				\checkmark

12. 2

Sol. Squares formed from 2 figures $=24$
Squares formed from 4 figures $=16$
Squares formed from 8 figures $=13$
Squares formed from 16 figures $=9$
Squares formed from 18 figures $=4$
Square formed from 32 figures $=1$
Squares formed from 36 figures $=4$
Squares formed from 64 figures $=1$
\therefore Total squares $=72$
13. 4

Sol. Since, $25-10+4=16$
$\Rightarrow+\rightarrow-$
$x \rightarrow+$
and $10 \times 3 \div 3=1$
$\Rightarrow \div \rightarrow x$
$\rightarrow \div$
$\therefore 16 \times 5+40-10 \times 2$
$=16+5-40 \div 10 \times 2$
$=16+5-4 \times 2$
$=21-8$
$=13$
14. 2 or 3

Sol. Since ' $>$ ' occur 4 times. There is no symbol on the ninth number after ' $>$ ', so if we consider cyclic order then correct answer is @.
If in place of symbol its written character then answer should be S .
15. 1

Sol. 1 to 9 all numbers are written horizontally, vertically and diagonally.
16. 1

Sol. $\quad \$ \rightarrow \geq$
© $\rightarrow<$
\# \rightarrow >
$\% \rightarrow \leq$
@ $\rightarrow=$
T\%R, R\$M, M@D, D@H
$\Rightarrow \mathrm{T} \leq \mathrm{R} \geq \mathrm{M}=\mathrm{D}<\mathrm{H}$

1. $D \% R$
$D \leq R$, holds true
2. $\mathrm{H} \# \mathrm{R}$

H > R
3. $\mathrm{T} \odot \mathrm{M}$
$\mathrm{T}<\mathrm{M}$
4. $\mathrm{T} \% \mathrm{D}$
$\mathrm{T} \leq \mathrm{D}$
17. No option correct.

Sol. $\quad \$ \rightarrow \geq$
© $\rightarrow<$
\# \rightarrow >
$\% \rightarrow \leq$
@ \rightarrow
M@B, B\#N, N\$R, R®K
$M=B>N \geq R<K$

1. $K \odot R$
$K<R$
2. $R \odot B$
$R<B$, holds true
3. $M \$ R$
$M \geq R$
4. $N \subset M$
N < M, holds true
5. 1

Sol. Area common to bigger rectangle, bigger triangle and smaller rectangle.
19. 3

Sol. Area common to vertical rectangle and circle.
20. 4

Sol. Area common to circle and bigger rectangle but not both triangles.
21. 2

Sol. $23^{\text {rd }}$ April Monday

Number of days between these 2 dates $=7+31+13=51$ days 51 days $=2$ odd days
$\therefore 13^{\text {th }}$ June same year will be Monday $+2=$ Wednesday
22. 2

Sol.

	M	T	W	T	F	S	S
$9-10$	S		S	S			
$10-12$	DS		S	DS	D		D
$12-12: 30$	DS	A	S	ADS	D		AD
$12: 30-2$	D	A		AD	D		AD
$2-4$		A		A	S	S	AS

All doctors are available on Thursday for $1 / 2$ hrs.
23. 3

Sol. Dr Ashutosh and Dr Shehnaz are available on Thursday for $1 / 2 \mathrm{hrs}$ and on Sunday for 2 hrs .
24. 3

Sol. Dr. Dhanwantri and Dr. Shehnaz are available on Monday for $2 \frac{1}{2}$ hrs and on Thursday for $2 \frac{1}{2}$ hrs.
25. 3

Sol. Total number of students who are not qualified in atleast 1 subject are
$(30+10+75+5+12+8+50)=190$
$\therefore 38 \%$ of total students $=190$
Total students $=500$
Candidates not qualified in atleast 2 subjects $=10+5+12+8=35$
$\therefore \%$ of such candidates $=\frac{35}{500} \times 100=7 \%$
26. 2

Sol.

From figure we can say he is the father of Samungou.
27. 3

Sol.

Sum of number of $1^{\text {st }}$ and $3^{\text {rd }}$ column is equal to $2^{\text {nd }}$ and $4^{\text {th }}$ column.
28. 3

Sol. $\quad(13-4) \times 5+4=49$
$(17-11) \times 7+6=48$
$(19-13) \times 6+8=44$
So, answer is option 3.
29. 2

Sol. Book $=108^{0}$
Not book $=36^{0}$
School fee $=72^{0}$
Mess charges $=18^{0}$
Travel and accommodation $=126^{\circ}$
30. 1

Sol. $\frac{A}{D}=\frac{2 \times 36}{5 \times 36}$
$\mathrm{A}=72$
B $=180$
$A+D=252$
If x is the number of total student
30 of $x=252$

$$
x=\frac{252 \times 100}{30}=840
$$

31. 3

Sol. Since some of the competitors are toppers and all topper are marked with green. So, some competitors (those were toppers) are definitely marked with green.
32. 2

Sol.

33. 2

Sol. As per observation.
34. $1 \& 3$ both

Sol. Option 1 and 3 are same.
35. 2

Sol. Through options.
36. 3

Sol. Atleast 2 clubs $=(14+11+8+36+12+24+10+15+16)=146$
37. 3

Sol. $\frac{B}{G}=\frac{1}{1}$

$$
2017-18
$$

$\frac{\mathrm{B}}{\mathrm{G}}=1.4=\frac{14}{10} \frac{7}{5} \frac{14}{10}$
So, in $2017-18$
$\frac{\mathrm{B}}{\mathrm{G}}=\frac{5}{5}$
\therefore Boys $=\frac{(17-18)}{(16-17)}=\frac{14}{5}$
38. 2

Sol. $27+22(2.7+0.27+\ldots)$
$27+2 \times 2.7(1+0.1+0.01)$
$27+2 \times \frac{27}{0.5}=3$
$27+6=33$
39. 1

Sol. $\quad \sqrt{9}=3, \sqrt{25}=5$
So, $3 \times 5=15$
$3+5=8=8^{2}=64$
$(5-3)=2$
Similarly,
$\sqrt{49}=7, \sqrt{100}=10$
$7 \times 10=70$
$7+10=17$
$10-7=3$
40. 2

Sol. $002 \mathrm{~B}, 009 \mathrm{I}, 028 \mathrm{~J}$, \qquad , 126I
$1^{3}+1,2^{3}+1,3^{3}+1,4^{3}+1$
B I J K I
(They are obtained by adding the digit)
41. 2

Sol.

$\Delta \mathrm{IEF}, \Delta \mathrm{IHF}, \Delta \mathrm{IGH}, \Delta \mathrm{GEI}, \Delta \mathrm{EFM}, \Delta \mathrm{EGH}, \Delta \mathrm{EGF}, \Delta \mathrm{GFH}, \Delta \mathrm{ABI}, \Delta \mathrm{BIC}, \Delta \mathrm{DIC}, \Delta \mathrm{DAI}, \Delta \mathrm{ABC}$, $\Delta \mathrm{ADC}, \Delta \mathrm{ADB}, \triangle \mathrm{DBC}, \Delta \mathrm{AJK}, \Delta \mathrm{JKB}, \Delta \mathrm{AJB}, \Delta \mathrm{DML}, \Delta \mathrm{LMC}, \triangle \mathrm{DCL}$
42. 2

Sol. $\quad 60 \rightarrow$ total students
Girls $=24$, boys $=36$
Kartik's rank is 17 in which 9 are girls rest are boys that is 7
Ratio of girls and boys after Kartik's is
$\frac{24-9}{36-8}=\frac{15}{28}$
43. 4

Sol. Sum of the digit is 3
44. 4

Sol. As per observation.
45. 4

Sol. From 1 and $2 \quad \mathrm{~L}=2$
From 1 and $3 \quad \square=8$
From above equation and $4 \quad \triangle=16$
So, clearly $23=16+5+2$
$=0+(\Delta /)+L$
$=L \Delta / O$
46. 1

Sol. As per observation.
47. 4

Sol. As per observation.
48. 4

Sol. As per observation.
49. 4

Sol. As per observation.
50. 1

Sol. As per observation.
51. 4

Sol. As per observation
52. 4

Sol.

53. 4

Sol. As per observation

54. 2

Sol. As per observation
55. 3

Sol.

56. 3

Sol. By using option $3=x^{3}+\frac{3 x}{2}$
If we put $\mathrm{n}=4$
Then $=4^{2}+\frac{3 \times 4}{2}=64+\frac{12}{2}=70$
57. 4

Sol. $\quad \mathrm{C}_{1}=9+16=12+13$
$\mathrm{C}_{2}=\mathrm{x}+63=53+50 \rightarrow \mathrm{x}=40$
$C_{3}=102+y=140+118 \rightarrow y=156$
58. 2

Sol. First row $\rightarrow \frac{6+17+11+4}{2}=19$ (Middle No.)
Second row $\rightarrow \frac{7+3+14+10+5+9}{2}=24$ (Middle No.)
Third row $\rightarrow \frac{1+6+8+18+16+9+7+3}{2}=34$ (Middle No.)
Fourth row $\rightarrow \frac{5+2+13+15+2+5}{2}=21$ (Middle No.)
Fifth row $\rightarrow \frac{5+16+12+7}{2}=20$ (Middle No.)
59. No option correct.

Sol.

Only conclusion I follows.
60. 3

Sol. Let the present age of Aman $=x$, Ayaz $=y$ and Ashwinder $=z$
Its given $x=y+6$,
$y=z+8$
$x+y=(z-4) \times 5$,
$x+y=5 z-20$,
$x+y-5 z=-20$
$z+14+z+8-5 z=-20[\therefore x=z+8+6, x=z+14]$
$22-3 z=-20$
$-3 z=-20-22$
$3 z=42, Z=14$
So, Ashwinder $=14$, Ayaz $=14+8=22$ and Aman $=22+6=28$
61. 3

Sol.

62. 3

Sol.

Above 60 years population $=3000-(1250+1150)=600$

So, the difference $\rightarrow 930-300=630$
63. 3

Sol. $484 \rightarrow 4+8+4=16$
$529 \rightarrow 5+2+9=16$
$961 \rightarrow 9+6+1=16$
Similarly
$784 \rightarrow 7+8+4=19$
$676 \rightarrow 6+7+6=19$
$289 \rightarrow 2+8+9=19$
64. 2

Sol. \quad First figure \rightarrow

$$
\begin{aligned}
& 3 \times 2+1=7 \\
& 7 \times 3-2=19 \\
& 19 \times 4+1=77 \\
& 77 \times 5-2=383 \\
& 4 \times 2+1=9 \\
& 9 \times 3-2=25
\end{aligned}
$$

Similarly, in figure $3 \rightarrow$

$$
\begin{aligned}
& 25 \times 4+1=101 \\
& 101 \times 5-2=503
\end{aligned}
$$

65. 4

Sol. As per observation
66. 4

Sol. As per observation
67. 1

Sol.

Monday	Tuesday	Wednesday	Thursday	Friday
Violet	Yellow	Indigo	Red	Green

68. 1

Sol.	$\begin{array}{ll}\text { Monday } & \text { Tuesday }\end{array}$	Wednesday	Thursday	Friday	
	Violet	Yellow	Indigo	Red	Green

69. 1

Sol. $\quad \mathrm{BC} \rightarrow 2,3 \xrightarrow{\text { Reverse }} 32$ (Upper side)
$\mathrm{B} \rightarrow 2 \longrightarrow$ (Down side)
$\mathrm{EG} \rightarrow 5,7 \xrightarrow{\text { Reverse }} 75$ (Upper side)
$\mathrm{C} \rightarrow 3 \longrightarrow$ (Down side)
$\mathrm{KM} \rightarrow 11,13 \longrightarrow 1311$ (Upper side)
$\mathrm{O} \rightarrow 15 \longrightarrow$ (Down side)
70. 1

Sol. Option $1-24 * 3 * 10 * 120 * 2$
After putting values
$24 \times 3-10=120 \div 2$
$72-10=60$
$62 \neq 0$
71. 2

Sol.

Here ' R ' is the grand-daughter of M.
72. 4

Sol. In all other pairs except $(86,99)$. The ratio of the two numbers is $8: 9$.
73. 1

Sol. As per observation.
74. 4

Sol. As per observation.
75. 2

Sol. $\quad \theta>\Delta>O^{>} \square>\theta$
Second eldest among the five cousins is \triangle
$76 \quad 1$
Sol. $\quad \theta>\Delta>O^{>} \square>8$ \square and \otimes is younger than \bigcirc
77. 3

Sol. $\quad+45$ minutes $\rightarrow 3: 15,4: 00,4: 45,5: 30$, (6:15)

$$
+35 \text { minutes } \rightarrow 7: 20,7: 55,8: 30,(9: 05), 9: 40
$$

78. 3

Sol. All angles form in figures A, B and D are same except figure C.
79. 4.

Sol.

| A | 1 | 2 | 1 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 1 | 2 | | | | | |
| 1 | 3 | 2 | 1 | | | | | |
| 1 | 2 | 1 | 1 | | 2 2 | 2 | 2 | |
| 3 | 3 | 1 | 2 | | | | | |
| 3 | 2 | 1 | 3 | 1 | 3 | 2 | 3 | 1 |
| 1 | 2 | 2 | 1 | 2 | 3 | 2 | | |
| 1 | 1 | 2 | 3 | | | | | |
| 2 | 2 | 1 | | | | | | |
| 1 | 1 | 3 | 1 | | | | | |
| | 2 | 2 | 2 | 1 | | | | |
| 3 | 1 | 3 | 1 | | | | | |
| 1 | 3 | 2 | 2 | 2 | | | | |
| 3 | 3 | 1 | B | | | | | |

80. 3

Sol. 7. Srinivas
6. Yaima
5. Jeet
4. Ranjan
3. Aloka
2. Danial

1. Barisha
2. 1

Sol.

With 3 females and 2 males answer is 1 .
82. 2

Sol. Bottom box upside down on top with two remaining boxes combined together.
83. 1.

Sol. As per observation

84. 3

Sol.

	Fine Arts	Social Science	Chemistry	Physics	Biology
A		\checkmark	\checkmark	\checkmark	
B	\checkmark	\checkmark	\checkmark		
C			\checkmark	\checkmark	\checkmark
D	\checkmark		\checkmark		\checkmark
E	\checkmark	\checkmark			\checkmark

85. 4

Sol.

	Fine Arts	Social Science	Chemistry	Physics	Biology
A		\checkmark	\checkmark	\checkmark	
B	\checkmark	\checkmark	\checkmark		
C			\checkmark	\checkmark	\checkmark
D	\checkmark		\checkmark		\checkmark
E	\checkmark	\checkmark			\checkmark

86. 2

Sol.

	Fine Arts	Social Science	Chemistry	Physics	Biology
A		\checkmark	\checkmark	\checkmark	
B	\checkmark	\checkmark	\checkmark		
C			\checkmark	\checkmark	\checkmark
D	\checkmark		\checkmark		\checkmark
E	\checkmark	\checkmark			\checkmark

87. 4.

Sol. $2^{1}+1,4^{2}+2,6^{3}+3,8^{4}+4,10^{5}+5$
88. 2

Sol. Cubes with no paint $\rightarrow(n-2)^{3}$
Here $\mathrm{n}=4 \Rightarrow(4-2)^{3}=8$
Cubes with pain on two faces $=(n-2) \times 12$
$=24$
Ratio $=8: 24$
$=1: 3$
89. 3

Sol.

Distance $=\sqrt{8^{2}+6^{2}}$
$=\sqrt{100}=10 \mathrm{~m}$
90. 1

Sol.

Dual series
Series $1 \rightarrow 14,15,16, \underline{17}$
Series $2 \rightarrow 12,13,14,15$
91. 3

Sol. 2314657 satisfies all the given conditions.
92. 1.

Sol. Only I satisfies the fact as Mani is an island so it must be surrounded by water.
We can't say anything about all island formation or all volcanoes.
93. 4

Sol. a e i o u
$\begin{array}{lllll}01 & 05 & 09 & 15 & 21\end{array}$
$10 \quad 50 \quad 90 \quad 51 \quad 12 \rightarrow$ revered $($ sum $=213)$
Angle of $u \rightarrow \frac{360}{213} \times 12=20.281$
94. 2

Sol. From A and $B \rightarrow 6 X$
From $\mathrm{D} \rightarrow 7,1,8 \mathrm{X}$
So 2 is at right place in A
From options only (2)

95. 2

Sol.

On every side 4 triangles can b formed.
For example \rightarrow for side AB
AGB, AFB, AEB, ADB
For 8 sides $\rightarrow 8 \times 4=32$
96. 2

Sol. 3 Seerat 2 Shaurya 6 Ruhani 14 Total $=28$
97. 4

Sol.

From (i) and (ii)
3 霰 $=30 \Rightarrow=10$
Only in option (4)

$$
\text { (雨) }=10
$$

98. 3
$\begin{array}{cccccc}\text { Sol. } & 1 & 2 & 3 & 4 & 5 \\ & \mathrm{E} & \mathrm{B} & \mathrm{C} & \mathrm{F} & \mathrm{D}\end{array}$

99. 1

Sol.

100. 1

Sol.

