ASSOCIATION OF MATHEMATICS TEACHRS OF INDIA Screening Test – Bhaskara Contest (NMTC-- JUNIOR LEVEL—IX and X Grades)

Saturday, the 15th October 2022

<u>Note</u>:

- 1. Fill in the Response Sheet with your Name, Class and the Institution through which you appear, in the specified places.
- 2. Diagrams given are only Visual aids; they are not drawn to scale.
- 3. You may use separate sheets to do rough work.
- 4. Use of Electronic gadgets such as Calculator, Mobile Phone or Computer is not permitted.
- 5. Duration of the Test: 2 pm to 4 pm (2 hours).

01. ABCD is a trapezium in which AB is parallel to CD. If AB = 30 cm, CD = 15 cm, AD = 13 cm and BC = 14 cm, then the area of the trapezium (in square cm) is **b**) 248 **c**) 252 **a**) 263 **d**) 293 **02.** If a + b = 2, where a, b are real and $4^a + 4^b = 6$, then the numerical value of $2^{2(2a-1)} + 2^{2(2b-1)}$ is **a**) 8 **b**) 12 **c**) 36 **d**) 1 **03.** If $\left(x + \frac{1}{x}\right)^2 = 3$, then the value of $x^{33} + x^{23} + x^{27} + x^{17} + 2$ is **c**) 0 **b**) 2 **d**) 4 **a**) 1 **04.** The solution x of the equation $(5x)^x = 5^{5^5}$ is of the form a^b , then a+b is **a**) 5 **b**) 10 **c**) 20 **d**) 9 ABC is a right-angled isosceles triangle in which $\angle A = 90^{\circ}$. 05. D is a point on BC. Then $\frac{BD^2 + CD^2}{4D^2}$ is equal to **c**) 3 **a**) 1 **b**) 2 **d**) 4

12. For permissible real values of x, y, z, the value of the expression

$$\frac{(2x+5y-3z)^3 + (2x-5y+3z)^3 + 2x(2x+5y-3z)(2x-5y+3z)}{x^3}$$
 is
a) 16 b) 32 c) 64 d) 128

13. When $\theta \neq 0^{\circ}$, 90° the value of the expression

a) 1

$$\frac{(1 + \sec \theta + \tan \theta)(1 + \csc \theta + \cot \theta)}{1 + \tan \theta + \cot \theta + \sec \theta + \csc \theta}$$
is equal to
a) 1
b) 2
c) -1
d) $\frac{1}{2}$

14. The number of real ordered pairs (x, y) which satisfy

15. *a*, *b* are natural numbers such that $\frac{a}{b} + \frac{b}{a} = a + b$; then

- **a**) *a* is odd and *b* is even.
- **b**) *a*, *b* are both even.
- c) Such natural numbers *a* and *b* do not exist.
- **d**) There is exactly one value of '*a*' and '*b*' which satisfy the equation.

Fill in the blanks:

The sum of all the roots of the equation $3^{\frac{x+2}{3x-4}} - 7 = 2\left(3^{\frac{5x-10}{3x-4}}\right)$ is _____. **16**. **17.** A square is inscribed in a right angled Triangle as shown in the figure. One leg а of the triangle is twice the other. If the perimeter of the square is 64 cm, then the length of longer leg of the b triangle (in cm) is _____.

If $\cos \theta (\tan \theta + 2)(2 \tan \theta + 1) = a \sec \theta + b \sin \theta$, then a + b is equal to _____. 18.

- 24. The difference between the fourth and first terms of a G.P. is 52. The sum of the first three terms is half of this difference. The nth term of this G.P. just exceeds 2022. Then the value of n is _____.
- 25. In the adjoining figure, OA and OB are two perpendicular radii.
 With A as centre and AO as radius, an arc is drawn to cut the circle at C.
 BC cuts OA at D.
 If ∠ADC = x^o, then x = ____.

26. Three pipes p₁, p₂ and p₃ can fill a tank in 10 hours.
After working at it together for 2 hours, p₁ is closed and p₂ and p₃ can fill it in 16 hours. The time required by p₁ to fill the tank alone is hours.

- **27.** The least number which when divided by 8, 9, 12 and 15 leaves 1 as remainder *each* time is _____.
- **28.** The sum of the digits of a two digit number is 15. If the digits are interchanged, the number of reverse digits is increased by 9. The original two digit number is _____.
- **29.** The number of numbers divisible by 17 between 300 and 500 is _____.
- 30. ABCD is a non-standard billiards table. AD = 5m. A ball is projected from A along a line which makes 45° with AD. It bounces at P on DC, again bounces respectively at Q and R as shown and reaches the line AP at S. The total distance covered by the ball is _____m

-000-